Rethinking the design of real-coded evolutionary algorithms: Making discrete choices in continuous search domains
نویسنده
چکیده
Although real-coded evolutionary algorithms (EAs) have been applied to optimization problems for over thirty years, the convergence properties of these methods remain poorly understood. We discuss the use of discrete random variables to perform search in real-valued EAs. Although most real-valued EAs perform mutation with continuous random variables, we argue that EAs using discrete random variables for mutation can be much easier to analyze. In particular, we present and analyze two simple EAs that make discrete choices of mutation steps.
منابع مشابه
PERFORMANCE OF DIFFERENT ANT-BASED ALGORITHMS FOR OPTIMIZATION OF MIXED VARIABLE DOMAIN IN CIVIL ENGINEERING DESIGNS
Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable problems and applied to different research domains in several engineering fields. Meanwhile, abundant studies have been already involved to adapt different ant models to continuous search spaces. Assessments indicate competitive performance of ACOs on discrete or continuous domains. Therefore, as poten...
متن کاملOPTIMUM PLACEMENT AND PROPERTIES OF TUNED MASS DAMPERS USING HYBRID GENETIC ALGORITHMS
Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to reduce the response of buildings subject to lateral loadings such as wind and earthquake loadings. Although TMDs system has received much attention from researchers due to their simplicity, the optimization of properties and placement of TMDs is a challenging task. Most research studies consider optimization o...
متن کاملFORCED WATER MAIN DESIGN MIXED ANT COLONY OPTIMIZATION
Most real world engineering design problems, such as cross-country water mains, include combinations of continuous, discrete, and binary value decision variables. Very often, the binary decision variables associate with the presence and/or absence of some nominated alternatives or project’s components. This study extends an existing continuous Ant Colony Optimization (ACO) algorithm to simultan...
متن کاملDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملSTRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 9 شماره
صفحات -
تاریخ انتشار 2005